Back to Course
HSC Chemistry
0% Complete
0/61 Steps
-
Module 1: Properties and Structure of Matter1.1 Properties of Matter
-
1.2 Atomic Structure and Atomic Mass
-
1.3 Periodicity
-
1.4 Bonding
-
Module 2: Introduction to Quantitative Chemistry2.1 Chemical Reactions and Stoichiometry
-
2.2 Mole Concept
-
2.3 Concentration and Molarity
-
2.4 Gas Laws
-
Module 3: Reactive Chemistry3.1 Chemical Reactions
-
3.2 Predicting Reactions of Metals
-
3.3 Rates of Reactions
-
Module 4: Drivers of Reactions4.1 Energy Changes in Chemical Reactions
-
4.2 Enthalpy and Hess's Law
-
4.3 Entropy and Gibbs Free Energy
-
Module 5: Equilibrium and Acid Reactions5.1 Static and Dynamic Equilibrium5 Topics
-
5.2 Factors that Affect Equilibrium2 Topics
-
5.3 Calculating the Equilibrium Constant2 Topics
-
5.4 Solution Equilibria
-
Module 6: Acid/Base Reactions6.1 Properties of Acids and Bases7 Topics
-
6.2 Using Brønsted–Lowry Theory2 Topics
-
6.3 Quantitative Analysis1 Topic
-
Module 7: Organic Chemistry7.1 Nomenclature2 Topics
-
7.2 Hydrocarbons2 Topics
-
7.3 Products of Reactions Involving Hydrocarbons
-
7.4 Alcohols1 Topic
-
7.5 Reactions of Organic Acids and Bases
-
7.6 Polymers2 Topics
-
Module 8: Applying Chemical Ideas8.1 Analysis of Inorganic Substances3 Topics
-
8.2 Analysis of Organic Substances
-
8.3 Chemical Synthesis and Design
-
Working ScientificallyWorking Scientifically Overview1 Topic
Lesson 15, Topic 1
In Progress
Overview of Static and Dynamic Equilibrium
Lesson Progress
0% Complete
- In chemical systems, the particles are always in motion at a fixed temperature.
- In a static chemical equilibrium, both forward and backward reactions have come to a halt as no changes occur at the molecular level.
- In a dynamic chemical equilibrium, the forward and reverse reactions occur at the same rate.
- In chemical systems, reactions may occur in the forward and reverse directions. They are said to be reversible.
- The attainment of equilibrium depends on whether the system is open or closed.
- A closed system is a system in which components cannot escape. Chemical reactions are therefore reversible in closed systems.